Холодильная машина - что это такое

Холодильная машина с точки зрения физики

холодильная машина моноблок           холодильная машина сплит система


Холодильная машина - устройство, служащее для отвода теплоты от охлаждаемого тела при температуре более низкой, чем температура окружающей среды.

Процессы, происходящие в холодильных машинах, являются частным случаем термодинамических процессов, т. е. таких, в которых происходит последовательное изменение параметров состояния рабочего вещества: температуры, давления, удельного объема, энтальпии.

Холодильные машины работают по принципу теплового насоса - отнимают теплоту от охлаждаемого тела и с затратой энергии (механической, тепловой и т. д.) передают её охлаждающей среде (обычно воде или окружающему воздуху), имеющей более высокую температуру, чем охлаждаемое тело.

Холодильные машины используются для получения температур от +10°С до -150°С. Область более низких температур относится к криогенной технике. Работа холодильной машины характеризуется их холодопроизводительностью.


История холодильных машин

Первые холодильная машина появились в середине XIX в. Одна из старейших холодильных машин - абсорбционная. Её изобретение и конструктивное оформление связано с именами Дж. Лесли (Великобритания, 1810), Ф. Карре (Франция, 1850) и Ф. Виндхаузена (Германия, 1878).

Первая парокомпрессионная машина, работавшая на эфире, построена Дж. Перкинсом (Великобритания, 1834). Позднее были созданы аналогичные машины с использованием в качестве хладагента метилового эфира и сернистого ангидрида.

В 1874 К. Линде (Германия) построил аммиачную парокомпрессионную холодильную машину, которая положила начало холодильному машиностроению.


Что такое холодильный цикл

В основе работы холодильников лежит холодильный цикл:

Простой паровой цикл механической холодильной машины реализуется с помощью четырех элементов, образующих замкнутый холодильный контур –

компрессора, конденсатора, дроссельного вентиля и испарителя или охладителя (рис. 1).

Пар из испарителя поступает в компрессор и сжимается, вследствие чего его температура повышается.

После выхода из компрессора пар, имеющий высокие температуру и давление, поступает в конденсатор, где охлаждается и конденсируется.

В некоторых конденсаторах используется режим переохлаждения, т.е. дальнейшее охлаждение сконденсировавшейся жидкости ниже ее температуры кипения. Из конденсатора жидкость проходит через дроссельный вентиль.

Поскольку температура кипения (насыщения) для данного давления оказывается ниже температуры жидкости, начинается ее интенсивное кипение; при этом часть жидкости испаряется, а температура оставшейся части опускается до равновесной температуры насыщения (тепло жидкости расходуется на ее превращение в пар).

Процесс дросселирования иногда называют внутренним охлаждением или самоохлаждением, поскольку в этом процессе температура жидкого хладагента снижается до нужного уровня.

Таким образом, из дроссельного вентиля выходят насыщенная жидкость и насыщенный пар. Насыщенный пар не может эффективно отводить тепло, поэтому он пропускается мимо испарителя и подается прямо на вход компрессора.

Между дросселем и испарителем установлен сепаратор, в котором пар и жидкость разделяются.




Рис. 1. Схема холодильного цикла.


Принцип действия компрессионных холодильных машин

Компрессионные холодильники - наиболее распространённые и универсальные. Основными составляющими частями такого холодильника являются:

  • - компрессор, получающий энергию от электрической сети;
  • - конденсатор, находящийся снаружи холодильника;
  • - испаритель, находящийся внутри холодильника;
  • - терморегулирующий расширительный вентиль, ТРВ, являющийся дросселирующим устройством;
  • - хладагент, циркулирующее в системе вещество с определёнными физическими характеристиками.

Ко всем элементам холодильной машины предъявляется требование высокой герметичности. В зависимости от вида холодильного компрессора компрессионные машины подразделяются на поршневые, турбокомпрессорные, ротационные и винтовые.

Хладагент под давлением через дросселирующее отверстие (капилляр или ТРВ) поступает в испаритель, где за счёт резкого уменьшения давления происходит испарение жидкости и превращение ее в пар. При этом хладагент отнимает тепло у внутренних стенок испарителя, за счёт чего происходит охлаждение внутреннего пространства холодильника.

Компрессор засасывает из испарителя хладагент в виде пара, сжимает его, за счёт чего температура хладагента повышается и выталкивает в конденсатор.

В конденсаторе, нагретый в результате сжатия хладагент остывает, отдавая тепло во внешнюю среду, и конденсируется, то есть превращается в жидкость. Процесс повторяется вновь.

Таким образом, в конденсаторе хладагент под воздействием высокого давления конденсируется и переходит в жидкое состояние, выделяя тепло, а в испарителе под воздействием низкого давления вскипает и переходит в газообразное, поглощая тепло.

Терморегулирующий вентиль (ТРВ) необходим для создания необходимой разности давлений между конденсатором и испарителем, при которой происходит цикл теплопередачи. Он позволяет правильно (наиболее полно) заполнять внутренний объем испарителя вскипевшим хладагентом. Пропускное сечение ТРВ изменяется по мере снижения тепловой нагрузки на испаритель, при понижении температуры в камере количество циркулирующего хладагента уменьшается. Капилляр — это аналог ТРВ. Он не меняет свое сечение, а дросселирует определенное количество хладагента, зависящее от давления на входе и выходе капилляра, его диаметра и типа хладагента.

Обычно также присутствует теплообменник, выравнивающий температуру на выходе из конденсатора и из испарителя. В результате к дросселю поступает уже охлажденный хладагент, который затем ещё сильнее охлаждается в испарителе, в то время как хладагент, поступивший из конденсатора подогревается, прежде чем поступить в компрессор и конденсатор. Это позволяет увеличить эффективность холодильника.

При достижении необходимой температуры температурный датчик размыкает электрическую цепь и компрессор останавливается. При повышении температуры (за счёт внешних факторов) датчик вновь включает компрессор.


Каскадные холодильные машины

Для повышения экономической эффективности холодильной машины (снижения затрат энергии на единицу отнятого от охлаждаемого тела количества теплоты) иногда перегревают пар, всасываемый компрессором, и переохлаждают жидкость перед дросселированием. По этой же причине для получения температур ниже -30°С используют многоступенчатые или каскадные холодильные машины.

В многоступенчатых холодильных машин сжатие пара производится последовательно в несколько ступеней с охлаждением его между отдельными ступенями. При этом в двухступенчатых холодильных машинах получают температуру кипения хладагента до -80 °С.

В каскадных холодильных машинах, представляющих собой несколько последовательно включенных холодильных машин, которые работают на различных, наиболее подходящих по своим термодинамическим свойствам для заданных температурных условий хладагентах, получают температуру кипения до -150 °С.

Ознакомиться с моделями холодильных машин, которые продаёт наша компания, Вы можете в разделе Холодильные агрегаты.


Сопутствующие Товары

Моноблок MM 109 S

Моноблок MM 109 S

Температурный режим, С -5...+10 Напряжение в сети, в/ф/гц 220/1/50 Maксимальное энергопотребление, кВт 0.6 Доза заправки R404, кг 0.56 ..

19 345 грн.

Моноблок MB 109 S

Моноблок MB 109 S

Температурный режим, С  -25... -15°С Напряжение в сети, в/ф/гц 220/1/50 Maксимальное энергопотребление, кВт 1,2 Доза заправки R404, кг ..

25 831 грн.

Сплит-система SM 109 S

Сплит-система SM 109 S

Габаритные размеры внешнего блока, мм 490(690)*315*704Габаритные размеры внутреннего блока, мм 408(481)*280*418(618)Хладагент R404AТемпературный режим, °С -5...+10Напряжение в сети, в/ф/гц 220/1/50Maк..

25 890 грн.

Сплит-система SB 109 S

Сплит-система SB 109 S

Габаритные размеры внешнего блока, мм 490(690)*315*704Габаритные размеры внутреннего блока, мм 408(481)*280*418(618)Хладагент R404AТемпературный режим, °С -15...- 25Напряжение в сети, в/ф/гц 220/1/50M..

36 220 грн.

Моноблок MB 109 R

Моноблок MB 109 R

Температурный режим, С -25... -15°С Напряжение в сети, в/ф/гц 1/N/PE 230/1/50 Maксимальное энергопотреблен..

24 380 грн.

Похожие статьи

Выбор температурного режима для холодильного оборудования

Выбор температурного режима для холодильного оборудования

Самая главная задача заведений Horeca – это вкусная и здоровая пища. На первом месте у руководителей предприятий общественного питания должны первую очередь стоять безопасность и здоровье их посетител..

Промышленное холодильное оборудование

Промышленное холодильное оборудование

Двадцать лет наша компания продаёт оборудование для предприятий питания: кафе, столовых, ресторанов. И двадцать лет возникает этот спор:Наш клиент - партнёр - покупатель оборудования думает про себя и..

Написать отзыв

Внимание: HTML не поддерживается! Используйте обычный текст.
    Плохо           Хорошо
Captcha